domingo, 5 de agosto de 2012

GRADO: 11° EL OIDO, MAGNETISMO, OPTICA GEOMETRICA Y ESTATICA

RESUMEN DEL TEMA EL OIDO...... GRADO:11º



Pabellón auricular
Partes de la oreja.
El pabellón auricular es una estructura cartilaginosa (compuesta por
cartílago y piel) cuya función es captar las vibraciones sonoras y redirigirlas hacia el interior del oído.
 ORIFICIO AUDITIVO                     
Es una cavidad del oído externo cuya función es conducir el sonido (las vibraciones provocadas por la variación de presión del aire) desde el pabellón auricular hasta el tímpano.
El conducto auditivo
Actúa como una etapa de potencia natural que amplifica automáticamente los sonidos más bajos que proceden del exterior. Al mismo tiempo, en el caso contrario, si se produce un sonido muy intenso que puede dañar el oído, el conducto auditivo segrega cerumen (cera), con lo que se cierra parcialmente el conducto, protegiéndolo.
 La membrana timpánica
(tímpano) es la estructura que separa el oído externo del oído medio y vibra cuando es golpeada por las ondas sonoras, dando inicio al proceso que convierte las ondas sonoras en impulsos nerviosos que viajan hasta el cerebro. Cuando el tímpano sufre daños se interrumpe el proceso auditivo.

Huesecillos del oído Cadena de huesecillos

El oído medio cuenta con 3 osículos o huesecillos: Martillo, Yunque y Estribo, aunque algunos autores incluyen un cuarto huesecillo denominado Lenticular. Tienen como objetivo conectar la membrana timpánica con la ventana oval, siendo éstos el medio normal para transmisión del sonido a través del oído medio.  Estos huesecillos son los más pequeños del cuerpo, con un peso muy pequeño: Martillo (22-24 mg), Yunque (25 mg) y Estribo (2 mg).

Ventana oval y redonda
La ventana oval (o ventana vestibular)
 Es  una membrana que recubre la entrada a la cóclea. Esta membrana se encarga de transmitir el sonido desde el oído medio, hasta el oído interno

La trompa de Eustaquio
Es una estructura anatómica, en forma de tubo, habitualmente cerrado, que se extiende desde la caja del tímpano hasta la región nasofaríngea. Mide de 3,5 a 4cm de largo y está tapizada por una capa de mucosa. Su función es regular las presiones dentro del oído medio, para proteger sus estructuras ante cambios bruscos y equilibrar las presiones a ambos lados del tímpano.
 Escala Media      
Se ubica entre los otros 2 compartimentos.
Se encuentra separada de la Escala Vestibular por una fina membrana denominada Membrana Vestibular (membrana de reissner)

Escala timpánica     
Extremo inferior del tubo de la coclear que se entiende desde la ventana redonda hasta el helicotrema y contiene peri-linfa (es el liquido que separa el laberinto membranoso del laverinto óseo del oído)
Cóclea o caracol
La cóclea o caracol es un sistema de tubos enrollados, con tres tubos diferentes, uno al lado del otro denominado rampa vestibular, rampa media y rampa timpánica. La rampa vestibular y media se hallan separadas entre sí por la membrana de Reissner (M.R.), la rampa timpánica y la rampa media se hallan separadas por la membrana basilar (M.B.). En la superficie de la membrana basilar se halla una estructura, el órgano de Corti, que contiene una serie de células mecánicamente sensibles, las células ciliadas.
 Helicotreme                                                    
Es un orificio que se encuentra en el interior de la coclear en concreto en el vertice , apartir del cual esta comienza arrollarse en espiral. Este pequeño orificio permite que las vibraciones de la ventana oval se transmitan desde la escala vestibular hasta la timpánica, con el propósito de conducir la energía de las ondas de presión no absorbidas por las células receptoras en la membrana basilar hacia la ventana redonda

El oído es uno de los cinco sentidos del sistema sensorial, que tiene la capacidad de percibir el sonido (percepción sonora).
Umbrales de la audición.
 Funciones del oído

1ª Función: Recarga cortical
El sonido se transforma en influjo nervioso a nivel de las células ciliadas del aparato cócleo-vestibular. Esta carga energética se reparte desde el cortés por todo el cuerpo, tonificando y dinamizando el ser. Son los agudos los sonidos más ricos en carga energética y su pérdida conduce a estados de cansancio y depresión. Su buena recepción aporta una mayor efectividad en el trabajo, menos fatigabilidad, sensación de dinamismo y actividad, mayor posibilidad de concentración y atención, mejor memorización y una disminución del tiempo de sueño.
2ª Función: Equilibrio y Verticalidad
El nervio Vestibular está en conexión directa con las raíces anteriores de la médula, controlando toda la motricidad corporal y la postura. El conjunto cócleo-vestibular permite reunir las informaciones tempo- espaciales y el ritmo. Es gracias a él que obtenemos la imagen del cuerpo interiorizado- Una alteración en la zona vestibular puede proyectar diversas patologías: disartria, dislexia, tartamudez, y en casos graves: vértigos y pérdida del equilibrio.

3ª Función: La Escucha
La escucha como acto voluntario diferenciada del oír como acto pasivo, se alcanza cuando la cóclea capta, analiza, selecciona y controla los sonidos que le llegan.
La lateralidad auditiva se instala utilizando los circuitos más cortos para una plena eficacia.
El bloqueo en la escucha tiene siempre un origen afectivo-emocional, el cuál ocasiona dificultades de discriminación, comprensión, espacialidad, memorización, etc...
El oído, como órgano de la comunicación, está íntimamente ligado a la emocionalidad del ser y son los problemas afectivos los que desde la etapa intrauterina van distorsionando la escucha del niño y modelando una personalidad más o menos patológica.
Modificando la curva de escucha obtendremos no sólo una mejoría en la comunicación y el lenguaje, sino una transformación completa de la actitud y la postura.
El oído tiene tres partes principales: externo, medio e interno. Para oír se utilizan todas ellas. Las ondas sonoras entran por el oído externo. Llegan al oído medio, donde hacen vibrar el tímpano. Las vibraciones se transmiten a través de tres huesos diminutos llamados o sículos que se encuentran en el oído medio. Las vibraciones viajan hacia el oído interno, un órgano curvilíneo con forma de serpiente. El oído interno transmite los impulsos nerviosos hasta el cerebro. El cerebro los identifica como sonidos. El oído interno también controla el equilibrio.
ENFERMEDADES DEL OIDO
Muchas enfermedades pueden afectar el oído o el equilibrio. Los oídos son las más comunes en bebés y niños pequeños. El tinnitus, un rumor que se escucha en el oído, puede ser a consecuencia de ruidos fuertes, medicinas o algunas otras causas. La enfermedad de Maniere puede resultar debido a problemas con líquidos en el oído medio; sus síntomas incluyen tinnitus y vértigo. Algunas enfermedades del oído pueden terminar en problemas de la audición y sordera.
Neurinoma del acústico.
*Barotrauma.
*Vértigo paroxístico posicional benigno.
*Colesteatoma.
*Otitis externa.
*Otitis media.
*Laberintitis.
*Enfermedad de Méniere.
*Otosclerosis.
*Presbiacusia.
*Tinnitus.
Otitis.
         síntomas: Pérdida de la audición, Ruido o zumbido en el oído ,Fiebre ,Escalofrío ,Irritabilidad ,Indisposición (sensación de enfermedad general) ,Náuseas, vómitos.
         Por qué se produce?
Al padecer un resfriado o gripe, la nariz se tapa debido al aumento de mucosidad, lo que produce en algunos casos un bloqueo de la trompa de Eustaquio, creando un terreno propicio para la proliferación de las bacterias (aunque la mayoría de otitis medias agudas son debidas a bacterias, hay algunas causadas por virus).
          Si esto ocurre, aumenta el riesgo de que el oído medio se llene de secreción infectada,       irritando el tímpano y provocando la formación de pus. Cuando la infección alcanza este nivel se desencadena un dolor agudo y persistente que en algunos casos va acompañado por una subida de temperatura.
La cura son antibióticos que sólo pueden recetarte. Suerte
Síndrome del meneire
          Consiste en una dilatación del canal endolinfático coclear por un aumento del volumen de la endolinfa. La causa de este aumento de la presión endolinfatica esta relacionada con un el bloqueo del acueducto del caracol (conducto perilinfatico), que drena el exceso de endolinfa del laberinto membranoso. El bloqueo de este conducto determina que aumente la presión endolinfatica y provoque esta distension en el laberinto membranoso (por donde circula la endolinfa). Estos síntomas también pueden ser causados por una infección en el oído, un trauma cerebral o infecciones persistentes del tracto superior respiratorio. El abuso de aspirina, que puede producir ototoxicidad, parece estar también involucrado en la aparición de la enfermedad, especialmente en niños. Los síntomas pueden incrementarse por el abuso de cafeína o incluso sal.
          Vértigo posicional paroxístico benigno (vppb
         se desencadena al realizar un movimiento brusco y habitualmente las maniobras desencadenantes son acostarse o incorporarse de la cama, al girar la cabeza hacia uno u otro lado cuando se está tumbado, al hiperextender el cuello para coger algo de una estantería alta, agacharse doblando el cuerpo, etc. El origen de este problema es la existencia de unos restos de tipo calcáreo en uno de los conductos del oído interno; cada vez que el paciente se mueve, irrita al oído interno y genera la sensación de vértigo.










MAGNETISMO

   
 
1.- Magnetismo


 Existe en la naturaleza un mineral llamado magnetita o piedra imán que tiene la propiedad de atraer el hierro, el cobalto, el níquel y ciertas aleaciones de estos metales. Esta propiedad recibe el nombre de magnetismo.



Los imanes:
Un imán es un material capaz de producir un campo magnético exterior y atraer el hierro (también puede atraer al cobalto y al níquel). Los imanes que manifiestan sus propiedades de forma permanente pueden ser naturales, como la magnetita (Fe3O4) o artificiales, obtenidos a partir de aleaciones de diferentes metales. Podemos decir que un imánpermanente es aquel que conserva el magnetismo después de haber sido imantado. Un imántemporal no conserva su magnetismo tras haber sido imantado.
En un imán la capacidad de atracción es mayor en sus extremos o polos. Estos polos se denominan norte y sur, debido a que tienden a orientarse según los polos geográficos de la Tierra, que es un gigantesco imán natural.



La región del espacio donde se pone de manifiesto la acción de un imán se llama campo magnético. Este campo se representa mediante líneas de fuerza, que son unas líneas imaginarias, cerradas, que van del polo norte al polo sur, por fuera del imán y en sentido contrario en el interior de éste; se representa con la letra B.


Desde hace tiempo es conocido que una corriente eléctrica genera un campo magnético a su alrededor. En el interior de la materia existen pequeñas corrientes cerradas debidas al movimiento de los electrones que contienen los átomos, cada una de ellas origina un microscópico imán o dipolo. Cuando estos pequeños imanes están orientados en todas direcciones sus efectos se anulan mutuamente y el material no presenta propiedades magnéticas; en cambio si todos los imanes se alinean actúan como un único imán y en ese caso decimos que la sustancia se ha magnetizado.
Imantar un material es ordenar sus imanes atómicos.
En la figura derecha se observa en primer lugar un material sin imantar y debajo un material imantado.

El magnetismo es producido por imanes naturales o artificiales. Además de su capacidad de atraer metales, tienen la propiedad de polaridad. Los imanes tienen dos polos magnéticos diferentes llamados Norte o Sur. Si enfrentamos los polos Sur de dos imanes estos se repelen, y si enfrentamos el polo sur de uno, con el polo norte de otro se atraen. Otra particularidad es que si los imanes se parten por la mitad, cada una de las partes tendrá los dos polos.
Cuando se pasa una piedra imán por un pedazo de hierro, éste adquiere a su vez la capacidad de atraer otros pedazos de hierro.
La atracción o repulsión entre dos polos magnéticos disminuye a medida que aumenta el cuadrado de la distancia entre ellos.

Campo magnético:
Se denomina campo magnético a la región del espacio en la que se manifiesta la acción de un imán.
Un campo magnético se representa mediante líneas de campo.
Un imán atrae pequeños trozos de limadura de hierro, níquel y cobalto, o sustancias compuestas a partir de estos metales (ferromagnéticos).
La imantación se transmite a distancia y por contacto directo. La región del espacio que rodea a un imán y en la que se manifiesta las fuerzas magnéticas se llama campo magnético.
Las líneas del campo magnético revelan la forma del campo. Las líneas de campo magnético emergen de un polo, rodean el imán y penetran por el otro polo.
Fuera del imán, el campo esta dirigido del polo norte al polo sur. La intensidad del campo es mayor donde están mas juntas las líneas (la intensidad es máxima en los polos).



El magnetismo esta muy relacionado con la electricidad. Una carga eléctrica esta rodeada de un campo eléctrico, y si se esta moviendo, también de un campo magnético. Esto se debe a las “distorsiones” que sufre el campo eléctrico al moverse la partícula.

El campo eléctrico es una consecuencia relativista del campo magnético. El movimiento de la carga produce un campo magnético.

En un imán de barra común, que al parecer esta inmóvil, esta compuesto de átomos cuyos electrones se encuentran en movimiento (girando sobre su orbita. Esta carga en movimiento constituye una minúscula corriente que produce un campo magnético. Todos los electrones en rotación son imanes diminutos.

UNA CARGA EN MOVIMIENTO PRODUCE UN CAMPO MAGNÉTICO

La brújula:

La brújula señala al norte magnético de la tierra, que no coincide con el norte geográfico, ya que conoce había explicado antes los polos opuestos se atraen y los similares se repelen, en el norte geográfico de la tierra se encuentra el polo sur magnéticamente hablando por lo que su opuesto (el norte en este caso) apunta lo contrario en una brújula


2. Electromagnetismo

El experimento de Oersted:
 Hans Oersted estaba preparando su clase de física en la Universidad de Copenhague, una tarde del mes de abril, cuando al mover una brújula cerca de un cable que conducía corriente eléctrica notó que la aguja se deflectaba hasta quedar en una posición perpendicular a la dirección del cable. Más tarde repitió el experimento una gran cantidad de veces, confirmando el fenómeno. Por primera vez se había hallado una conexión entre la electricidad y el magnetismo, en un accidente que puede considerarse como el nacimiento del electromagnetismo.
Del experimento de Oersted se deduce que ;
  • Una carga en movimiento crea un campo magnético en el espacio que lo rodea.
  • Una corriente eléctrica que circula por un conductor genera a su alrededor un campo magnético cuya intensidad depende de la intensidad de la corriente eléctrica y de la distancia del conductor.

Campo magnético creado por un conductor rectilíneo:

Una corriente rectilínea crea a su alrededor un campo magnético cuya intensidad se incrementa al aumentar la intensidad de la corriente eléctrica y disminuye al aumentar la distancia con respecto al conductor.

En 1820 el físico danés Hans Christian Oersted descubrió que entre el magnetismo y las cargas de la corriente eléctrica que fluye por un conductor existía una estrecha relación.
Cuando eso ocurre, las cargas eléctricas o electrones que se encuentran en movimiento en esos momentos, originan la aparición de un campo magnético tal a su alrededor, que puede desviar la aguja de una brújula.

 

Campo magnético creado por una espira:

El campo magnético creado por una espira por la que circula corriente eléctrica aumenta al incrementar la intensidad de la corriente eléctrica

Campo magnético creado por un solenoide:

El campo magnético creado por un solenoide se incrementa al elevar la intensidad de la corriente, al aumentar el número de espiras y al introducir un trozo de hierro en el interior de la bobina (electroimán).

Bobina solenoide con núcleo de aire construida con alambre desnudo de cobre enrollado en forma de espiral y protegido con barniz aislante. Si a esta bobina le suministramos corriente eléctrica empleando cualquier fuente de fuerza electromotriz, como una batería, por ejemplo, el flujo de la corriente que circulará a través de la bobina propiciará la aparición de un campo magnético de cierta intensidad a su alrededor.
 
Campo magnético creado por un conductor rectilíneo:
Una corriente rectilínea crea a su alrededor un campo magnético cuya intensidad se incrementa al aumentar la intensidad de la corriente eléctrica y disminuye al aumentar la distancia con respecto al conductor.
En 1820 el físico danés Hans Christian Oersted descubrió que entre el magnetismo y las cargas de la corriente eléctrica que fluye por un conductor existía una estrecha relación.
Cuando eso ocurre, las cargas eléctricas o electrones que se encuentran en movimiento en esos momentos, originan la aparición de un campo magnético tal a su alrededor, que puede desviar la aguja de una brújula.

Campo magnético creado por una espira:
El campo magnético creado por una espira por la que circula corriente eléctrica aumenta al incrementar la intensidad de la corriente eléctrica
Campo magnético creado por un solenoide:
El campo magnético creado por un solenoide se incrementa al elevar la intensidad de la corriente, al aumentar el número de espiras y al introducir un trozo de hierro en el interior de la bobina (electroimán).
Bobina solenoide con núcleo de aire construida con alambre desnudo de cobre enrollado en forma de espiral y protegido con barniz aislante. Si a esta bobina le suministramos corriente eléctrica empleando cualquier fuente de fuerza electromotriz, como una batería, por ejemplo, el flujo de la corriente que circulará a través de la bobina propiciará la aparición de un campo magnético de cierta intensidad a su alrededor.

Bobina solenoide a la que se le ha introducido un núcleo metálico como el hierro (Fe). Si comparamos la bobina anterior con núcleo de aire con la bobina de  esta ilustración, veremos que ahora las líneas de fuerza magnética se encuentran mucho más intensificadas al haberse convertido en un electroimán.








3.- Corrientes inducidas

En 1831, Michael Faraday observó que un imán generaba una corriente eléctrica en las proximidades de una bobina, siempre que el imán o la bobina estuvieran en movimiento. La explicación teórica fue:
  • Es necesario un campo magnético variable (imán, bobina o cable en movimiento) para crear una corriente eléctrica en el cable o en la bobina.
  • Esta corriente se conoce como corriente inducida, y el fenómeno, como inducción electromagnética. La corriente eléctrica inducida existe mientras dure la variación del campo magnético.
  • La intensidad de la corriente eléctrica es tanto mayor  cuanto más intenso sea el campo magnético y cuanto más rápido se muevan el imán o la bobina.


Condición para inducir una corriente eléctrica:
La corriente eléctrica inducida existe mientras dure esta variación, y su intensidad es tanto mayor cuanto más rápida sea dicha variación.
Una corriente eléctrica crea a su alrededor un campo magnético, y un campo magnético variable inducido, a su vez, una corriente eléctrica en un circuito.
El sentido de la corriente inducida (Ley de Lenz):
La corriente inducida tiende a oponerse a al causa que la produce.
El circuito de la figura consta de una barra conductora (1-2) que desliza sobre dos conductores rectilíneos. El circuito queda cerrado a través de una resistencia señalada como R y lo acciona un interruptor.
Se encuentra inmerso en un campo magnético B el cual es perpendicular al plano definido por el circuito y dirigido hacia en interior de su pantalla.
Si ponemos en movimiento la varilla con una velocidad v como se indica, en las cargas que existen en la varilla se producirán fuerzas (Lorentz).








La inducción electromagnética es el fundamento del alternador y la dinamo, dispositivos que generan corriente, así como de los transformadores y motores eléctricos, que convierten la energía eléctrica en mecánica (movimiento).
El alternador y la dinamo.
Un alternador está formado por un imán fijo a una bobina capaz de girar entre los polos del imán. El alternador produce corriente alterna.
   
Elementos de un alternador simple
Un alternador consta de dos partes fundamentales, elinductor, que es el que crea el campo magnético y el inducidoque es el conductor el cual es atravesado por las líneas de fuerza de dicho campo
Para más información sobre alternadores pincha aquí.
Un rectificador transforma la corriente alterna en corriente continua, es decir, rectifica la corriente alterna.
Para más información sobre rectificadores pincha aquí
Una dinamo consta de un imán que gira en el interior de un núcleo de hierro dulce, que tiene arrollada una bobina. Una dinamo produce corriente continua.
namo de disco de Faraday
Faraday mostró que otra forma de inducir la corriente era moviendo el conductor eléctrico mientras la fuente magnética permanecía estacionaria. Este fue el principio de la dinamo de disco, que presentaba un disco conductor girando dentro de un campo magnético (ver el dibujo) movido mediante una correa y una polea en la izquierda. El circuito eléctrico se completaba con hilos estacionarios que tocan el disco en su borde y en su eje, como se muestra en la parte derecha del dibujo. No era un diseño muy práctico de la dinamo (a menos que buscásemos generar enormes corrientes a muy bajo voltaje), pero en el universo a gran escala, la mayoría de las corrientes son producidas, aparentemente, mediante movimientos semejantes.
Para más información sobre dinamos pincha aquí.










 
El alternador y la dinamo.
Un alternador está formado por un imán fijo a una bobina capaz de girar entre los polos del imán. El alternador produce corriente alterna.
Elementos de un alternador simple
Un alternador consta de dos partes fundamentales, elinductor, que es el que crea el campo magnético y el inducidoque es el conductor el cual es atravesado por las líneas de fuerza de dicho campo
Para más información sobre alternadores pincha aquí.
Un rectificador transforma la corriente alterna en corriente continua, es decir, rectifica la corriente alterna.
Para más información sobre rectificadores pincha aquí
Una dinamo consta de un imán que gira en el interior de un núcleo de hierro dulce, que tiene arrollada una bobina. Una dinamo produce corriente continua.
Dinamo de disco de Faraday
Faraday mostró que otra forma de inducir la corriente era moviendo el conductor eléctrico mientras la fuente magnética permanecía estacionaria. Este fue el principio de la dinamo de disco, que presentaba un disco conductor girando dentro de un campo magnético (ver el dibujo) movido mediante una correa y una polea en la izquierda. El circuito eléctrico se completaba con hilos estacionarios que tocan el disco en su borde y en su eje, como se muestra en la parte derecha del dibujo. No era un diseño muy práctico de la dinamo (a menos que buscásemos generar enormes corrientes a muy bajo voltaje), pero en el universo a gran escala, la mayoría de las corrientes son producidas, aparentemente, mediante movimientos semejantes.
Para más información sobre dinamos pincha aquí.

El transformador.
Un transformador consta de dos arrollamientos de cable sobre un núcleo de hierro dulce y se utiliza para modificar la tensión de la corriente alterna.
Esquema de un transformador
Para más información sobre transformadores pincha aquí.
El motor eléctrico.
Un motor eléctrico es un aparato que transforma energía eléctrica en energía mecánica.
Existen diferentes tipos de motores, pero de entre todos tal vez sean los llamados “motores de corriente continua” los que permiten ver de un modo más simple cómo obtener movimiento gracias al campo magnético creado por una corriente.

El gráfico muestra de modo esquemático las partes principales de un motor de corriente continua.

Esquema de un motor eléctrico.


El elemento situado en el centro es la parte del motor que genera el movimiento. Se la llama armadura o rotor, y consiste en un electroimán que puede girar libremente entorno a un eje. Dicho rotor está rodeado por un imán permanente, cuyo campo magnético permanece fijo.

El electroimán recibe la corriente a través del contacto establecido entre las escobillas y el conmutador. Las escobillas permanecen fijas, mientras que el conmutador puede girar libremente entre ellas siguiendo el movimiento del rotor.

Cuando la corriente pasa a lo largo del electroimán, sus polos son atraídos y repelidos por los polos del imán fijo, de modo que el rotor se moverá hasta que el polo norte del electroimán quede mirando al polo sur del imán permanente. Pero tan pronto como los polos del rotor quedan “mirando” a los polos del imán, se produce un cambio en el sentido de la corriente que pasa por el rotor. Este cambio es debido a que el conmutador, al girar, modifica los contactos con las escobillas e intercambia el modo en que el electroimán recibe la corriente de la pila.

Al modificarse el signo de los polos del electroimán, los polos del rotor resultarán repelidos por los polos del imán fijo, pues en esta nueva situación estarán enfrentados polos de igual signo, con lo cual el rotor se ve obligado a seguir girando. Nuevamente, cuando los polos del electroimán estén alineados con los polos opuestos del imán fijo, el contacto entre escobillas y conmutador modificará el sentido de la corriente, con lo cual el rotor será forzado a seguir girando.


Electrostática

Benjamin Franklin haciendo un experimento con un rayo, que no es otra cosa que un fenómeno electrostático macroscópico.
La electrostática es la rama de la física que estudia los efectos mutuos que se producen entre los cuerpos como consecuencia de su carga eléctrica, es decir, el estudio de las cargas eléctricas en reposo, sabiendo que las cargas puntuales son cuerpos cargados cuyas dimensiones son despreciables frente a otras dimensiones del problema. La carga eléctrica es la propiedad de la materia responsable de los fenómenos electrostáticos, cuyos efectos aparecen en forma de atracciones y repulsiones entre los cuerpos que la poseen.
Históricamente, la electrostática fue la rama del electromagnetismo que primero se desarrolló. Con la postulación de la Ley de Coulomb fue descrita y utilizada en experimentos de laboratorio a partir del siglo XVII, y ya en la segunda mitad del siglo XIX las leyes de Maxwell concluyeron definitivamente su estudio y explicación, y permitieron demostrar cómo las leyes de la electrostática y las leyes que gobiernan los fenómenos magnéticos pueden ser estudiadas en el mismo marco teórico denominado electromagnetismo.

Desarrollo histórico


Representación de campo eléctrico producido por dos cargas.
Alrededor del 600 a. C. el filósofo griego Tales de Mileto descubrió que si frotaba un trozo de la resina vegetal fósil llamada ámbar, en griegoélektron, este cuerpo adquiría la propiedad de atraer pequeños objetos. Algo más tarde, otro griego, Teofrasto (310 a. C.), realizó un estudio de los diferentes materiales que eran capaces de producir fenómenos eléctricos y escribió el primer tratado sobre la electricidad.
A principios del siglo XVII comienzan los primeros estudios sobre la electricidad y el magnetismo orientados a mejorar la precisión de la navegación con brújulas magnéticas. El físico real británico William Gilbert utiliza por primera vez la palabra electricidad, creada a partir del término griego elektron (ámbar). El jesuita italiano Niccolo Cabeo analizó sus experimentos y fue el primero en comentar que había fuerzas de atracción entre ciertos cuerpos y de repulsión entre otros.
Alrededor de 1672 el físico alemán Otto von Guericke construye la primera máquina electrostática capaz de producir y almacenar energía eléctrica estática por rozamiento. Esta máquina consistía en una bola de azufre atravesada por una varilla que servía para hacer girar la bola. Las manos aplicadas sobre la bola producían una carga mayor que la conseguida hasta entonces. Francis Hawksbee perfeccionó hacia 1707la máquina de fricción usando una esfera de vidrio.
En 1733 el francés Francois de Cisternay du Fay propuso la existencia de dos tipos de carga eléctrica, positiva y negativa, constatando que:
  • Los objetos frotados contra el ámbar se repelen.
  • También se repelen los objetos frotados contra una barra de vidrio.
  • Sin embargo, los objetos frotados con el ámbar atraen los objetos frotados con el vidrio.
Du Fay y Stephen Gray fueron dos de los primeros "físicos eléctricos" en frecuentar plazas y salones para popularizar y entretener con la electricidad. Por ejemplo, se electriza a las personas y se producen descargas eléctricas desde ellas, como en el llamado beso eléctrico: se electrificaba a una dama y luego ella daba un beso a una persona no electrificada.1
En 1745 se construyeron los primeros elementos de acumulación de cargas, los condensadores, llamados incorrectamente por anglicismo capacitores, desarrollados en la Universidad de Leyden(hoy Leiden) por Ewald Jürgen Von Kleist y Pieter Van Musschenbroeck. Estos instrumentos, inicialmente denominados botellas de Leyden, fueron utilizados como curiosidad científica durante gran parte del siglo XVIII. En esta época se construyeron diferentes instrumentos para acumular cargas eléctricas, en general variantes de la botella de Leyden, y otros para manifestar sus propiedades, como los electroscopios.
En 1767, Joseph Priestley publicó su obra The History and Present State of Electricity sobre la historia de la electricidad hasta esa fecha. Este libro sería durante un siglo el referente para el estudio de la electricidad. En él, Priestley anuncia también alguno de sus propios descubrimientos, como la conductividad del carbón. Hasta entonces se pensaba que sólo el agua y los metales podían conducir la electricidad.2
En 1785 el físico francés Charles Coulomb publicó un tratado en el que se describían por primera vez cuantitativamente las fuerzas eléctricas, se formulaban las leyes de atracción y repulsión de cargas eléctricas estáticas y se usaba la balanza de torsión para realizar mediciones. En su honor, el conjunto de estas leyes se conoce con el nombre de ley de Coulomb. Esta ley, junto con una elaboración matemática más profunda a través del teorema de Gauss y la derivación de los conceptos de campo eléctrico y potencial eléctrico, describe la casi totalidad de los fenómenos electrostáticos.
Durante todo el siglo posterior se sucedieron avances significativos en el estudio de la electricidad, como los fenómenos eléctricos dinámicos producidos por cargas en movimiento en el interior de un material conductor. Finalmente, en 1864 el físico escocés James Clerk Maxwell unificó las leyes de la electricidad y el magnetismo en un conjunto reducido de leyes matemáticas.

Electricidad estática

La electricidad estática es un fenómeno que se debe a una acumulación de cargas eléctricas en un objeto. Esta acumulación puede dar lugar a una descarga eléctrica cuando dicho objeto se pone en contacto con otro.
Antes del año 1832, que fue cuando Michael Faraday publicó los resultados de sus experimentos sobre la identidad de la electricidad, los físicos pensaban que la electricidad estática era algo diferente de la electricidad obtenida por otros métodos. Michael Faraday demostró que la electricidad inducida desde un imán, la electricidad producida por una batería, y la electricidad estática son todas iguales.
La electricidad estática se produce cuando ciertos materiales se frotan uno contra el otro, como lana contra plástico o las suelas de zapatos contra la alfombra, donde el proceso de frotamiento causa que se retiren los electrones de la superficie de un material y se reubiquen en la superficie del otro material que ofrece niveles energéticos más favorables. O cuando partículas ionizadas se depositan en un material, como ocurre en los satélites al recibir el flujo del viento solar y de los cinturones de radiación de Van Allen. La capacidad de electrificación de los cuerpos por rozamiento se denomina efecto triboeléctrico; existe una clasificación de los distintos materiales denominada secuencia triboeléctrica.
La electricidad estática se utiliza comúnmente en la xerografía, en filtros de aire, en algunas pinturas de automóvil, en algunos aceleradores de partículas subatómicas, etc. Los pequeños componentes de los circuitos eléctrónicos pueden dañarse fácilmente con la electricidad estática. Sus fabricantes usan una serie de dispositivos antiestáticos y embalajes especiales para evitar estos daños. Hoy la mayoría de los componentes semiconductores de efecto de campo, que son los más delicados, incluyen circuitos internos de protección antiestática.

Aislantes y conductores

Los materiales se comportan de forma diferente en el momento de adquirir una carga eléctrica. Así, una varilla metálica sostenida con la mano y frotada con una piel no resulta cargada. Sin embargo, sí es posible cargarla cuando al frotarla se usa para sostenerla un mango de vidrio o de plástico y el metal no se toca con las manos al frotarlo. La explicación es que las cargas pueden moverse libremente entre el metal y el cuerpo humano, lo que las iría descargando en cuanto se produjeran, mientras que el vidrio y el plástico no permiten la circulación de cargas porque aíslan eléctricamente la varilla metálica del cuerpo humano.
Esto se debe a que en ciertos materiales, típicamente en los metales, los electrones más alejados de los núcleos respectivos adquieren fácilmente libertad de movimiento en el interior del sólido. Estos electrones libres son las partículas que transportarán la carga eléctrica. Al depositar electrones en ellos, se distribuyen por todo el cuerpo, y viceversa, al perder electrones, los electrones libres se redistribuyen por todo el cuerpo para compensar la pérdida de carga. Estas sustancias se denominan conductores.
En contrapartida de los conductores eléctricos, existen materiales en los que los electrones están firmemente unidos a sus respectivos átomos. En consecuencia, estas sustancias no poseen electrones libres y no será posible el desplazamiento de carga a través de ellos. Al depositar una carga eléctrica en ellos, la electrización se mantiene localmente. Estas sustancias son denominadas aislantes o dieléctricos. El vidrio y los plásticos son ejemplos típicos.
La distinción entre conductores y aislantes no es absoluta: la resistividad de los aislantes no es infinita (pero sí muy grande), y las cargas eléctricas libres, prácticamente ausentes de los buenos aislantes, pueden crearse fácilmente suministrando la cantidad adecuada de energía para separar a un electrón del átomo al que esté ligado (por ejemplo, mediante irradiación o calentamiento). Así, a una temperatura de 3000 K, todos los materiales que no se descomponen por la temperatura, son conductores.
Entre los buenos conductores y los dieléctricos existen múltiples situaciones intermedias. Entre ellas destacan los materiales semiconductores por su importancia en la fabricación de dispositivos electrónicos que son la base de la actual revolución tecnológica. En condiciones ordinarias se comportan como dieléctricos, pero sus propiedades conductoras se modifican mediante la adición de una minúscula cantidad de sustancias dopantes. Con esto se consigue que pueda variarse la conductividad del material semiconductor como respuesta a la aplicación de un potencial eléctrico variable en su electrodo de control.
Ciertos metales adquieren una conductividad infinita a temperaturas muy bajas, es decir, la resistencia al flujo de cargas se hace cero. Se trata de los superconductores. Una vez que se establece una corriente eléctrica de circuito cerrado en un superconductor, los electrones fluyen por tiempo indefinido.

Generadores electrostáticos

Los generadores de electricidad estática son máquinas que producen altísimas tensiones con una muy pequeña intensidad de corriente. Hoy se utilizan casi exclusivamente para demostraciones escolares de física. Ejemplos de tales generadores son el electróforo, la máquina de Wimshurst y el generador de Van de Graaff.
Al frotar dos objetos no conductores se genera una gran cantidad de electricidad estática. En realidad, este efecto no se debe a la fricción, pues dos superficies no conductoras pueden cargarse con sólo apoyar una sobre la otra. Sin embargo, al frotar dos objetos aumenta el contacto entre las dos superficies, lo que aumentará la cantidad de electricidad generada. Habitualmente los aislantes son buenos para generar y para conservar cargas superficiales. Algunos ejemplos de estas sustancias son el caucho, los plásticos y el vidrio. Los objetos conductores raramente generan desequilibrios de cargas, excepto, por ejemplo, cuando una superficie metálica recibe el impacto de un sólido o un líquido no conductor, como en los transportes de combustibles líquidos. La carga que se transfiere durante la electrificación por contacto se almacena en la superficie de cada objeto, a fin de estar lo más separada posible y así reducir la repulsión entre las cargas.

Carga inducida

La carga inducida se produce cuando un objeto cargado repele o atrae los electrones de la superficie de un segundo objeto. Esto crea una región en el segundo objeto que está con una mayor carga positiva, creándose una fuerza atractiva entre los objetos. Por ejemplo, cuando se frota un globo, el globo se mantendrá pegado a la pared debido a la fuerza atractiva ejercida por dos superficies con cargas opuestas (la superficie de la pared gana una carga eléctrica inducida pues los electrones libres de la superficie del muro son repelidos por los electrones que ha ganado el globo al frotarse; se crea así por inducción electrostática una superficie de carga positiva en la pared, que atraerá a la superficie negativa del globo).

Carga por fricción

En la carga por fricción se transfiere gran cantidad de electrones porque la fricción aumenta el contacto de un material con el otro. Los electrones más internos de un átomo están fuertemente unidos al núcleo, de carga opuesta, pero los más externos de muchos átomos están unidos muy débilmente y pueden desalojarse con facilidad. La fuerza que retiene a los electrones exteriores en el átomo varia de una sustancia a otra. Por ejemplo los electrones son retenidos con mayor fuerza en la resina que en la lana, y si se frota una torta de resina con un tejido de lana bien seco, se transfieren los electrones de la lana a la resina. Por consiguiente la torta de resina queda con un exceso de electrones y se carga negativamente. A su vez, el tejido de lana queda con una deficiencia de electrones y adquiere una carga positiva. Los átomos con deficiencia de electrones son iones, iones positivos porque, al perder electrones (que tienen carga negativa), su carga neta resulta positiva.

Carga por inducción

Se puede cargar un cuerpo por un procedimiento sencillo que comienza con el acercamiento a él de una varilla de material aislante, cargada. Considérese una esfera conductora no cargada, suspendida de un hilo aislante. Al acercarle la varilla cargada negativamente, los electrones de conducción que se encuentran en la superficie de la esfera emigran hacia el lado lejano de ésta; como resultado, el lado lejano de la esfera se carga negativamente y el cercano queda con carga positiva. La esfera oscila acercándose a la varilla, porque la fuerza de atracción entre el lado cercano de aquélla y la propia varilla es mayor que la de repulsión entre el lado lejano y la varilla. Vemos que tiene una fuerza eléctrica neta, aun cuando la carga neta en las esfera como un todo sea cero. La carga por inducción no se restringe a los conductores, sino que puede presentarse en todos los materiales.

Aplicaciones

La electricidad estática se usa habitualmente en xerografía en la que un pigmento en polvo (tinta seca o toner) se fija en las áreas cargadas previamente, lo que hace visible la imagen impresa.
En electrónica, la electricidad estática puede causar daños a los componentes, por lo que los operarios han de tomar medidas para descargar la electricidad estática que pudieran haber adquirido. Esto puede ocurrir a una persona por frotamiento de las suelas de los zapatos (de materiales como la goma) contra suelos de tela o alfombras, o por frotamiento de su vestimenta contra una silla de plástico. Las tensiones generadas así serán más altas en los días con baja humedad relativa ambiente. Hoy las alfombras y las sillas se hacen con materiales que generen poca electricidad por frotamiento. En los talleres de reparación o en fábricas de artefactos electrónicos se tiene el cuidado de evitar la generación o de descargar estas cargas electrostáticas.
Al aterrizar un avión se debe proceder a su descarga por seguridad. En los automóviles también puede ocurrir la electrificación al circular a gran velocidad en aire seco (el aire húmedo produce menores cargas), por lo que también se necesitan medidas de seguridad para evitar las chispas eléctricas.
Se piensa que la explosión en 2003 de un cohete en el Centro de Lanzamiento de Alcántara en Brasil, que mató a 21 personas, se debió a chispas originadas por electricidad estática.

Conceptos matemáticos fundamentales

La ley de Coulomb

La ecuación fundamental de la electrostática es la ley de Coulomb, que describe la fuerza entre dos cargas puntuales Q_1 y Q_2. Dentro de un medio homogéneo como es el aire, la relación se expresa como:
\mathbf{F} = \frac{ Q_1Q_2}{4 \pi \varepsilon r^2}\hat{r}
donde F es la fuerza, \varepsilon es una constante característica del medio, llamada la « permitividad ». En el caso del vacío, se denota como \varepsilon0. La permitividad del aire es solo un 0,5‰ superior a la del vacío, por lo que a menudo se usan indistintamente.
Las cargas del mismo signo se repelen entre sí, mientras que las cargas de signo opuesto se atraen entre sí. La fuerza es proporcional al producto de las cargas eléctricas e inversamente proporcional al cuadrado de la distancia entre las cargas.
La acción a distancia se efectúa por medio del campo eléctrico.

El campo eléctrico

El campo eléctrico (en unidades de voltios por metro) se define como la fuerza (en newtons) por unidad de carga (en coulombs). De esta definición y de la ley de Coulomb, se desprende que la magnitud de un campo eléctrico E creado por una carga puntual Q es:
\mathbf{E} = \frac{Q}{4 \pi \varepsilon_o r^2}\hat{r}

La ley de Gauss

La ley de Gauss establece que el flujo eléctrico total a través de una superficie cerrada es proporcional a la carga eléctrica total encerrada dentro de la superficie. La constante de proporcionalidad es la permitividad del vacío.
Matemáticamente, la ley de Gauss toma la forma de una ecuación integral:
\oint\limits_S  \ \mathbf{E} \cdot \mathrm{d}\mathbf{A} = {1 \over \epsilon_o}\int\limits_V \rho \cdot \mathrm{d}V
Alternativamente, en forma diferencial, la ecuación es:
 \mathbf{\nabla} \cdot \varepsilon_o \, \mathbf{E} = \rho

La ecuación de Poisson

La definición del potencial electrostático, combinada con la forma diferencial de la ley de Gauss, provee una relación entre el potencial Φ y la densidad de carga ρ:
{\nabla}^2 \phi = - {\rho \over \varepsilon_o}
Esta relación es una forma de la ecuación de Poisson.

Ecuación de Laplace

En ausencia de carga eléctrica, la ecuación es
{\nabla}^2 \phi = 0

Fenómenos electrostáticos

La existencia del fenómeno electrostático es bien conocido desde la antigüedad, existen numerosos ejemplos ilustrativos que hoy forman parte de la enseñanza moderna, como el hecho de que ciertos materiales se cargan de electricidad por simple frotamiento.

Electrización

Se denomina electrización al efecto de ganar o perder cargas eléctricas, normalmente electrones, producido por un cuerpo eléctricamente neutro.
  1. Por contacto: Se puede cargar un cuerpo neutro con solo tocarlo con otro previamente cargado. En este caso, ambos quedan con el mismo tipo de carga, es decir, si se toca un cuerpo neutro con otro con carga positiva, el primero debe quedar con carga positiva.
  2. Por frotamiento: Al frotar dos cuerpos eléctrica-mente neutros (número de electrones igual al número de pro-tones), ambos se cargan, uno con carga positiva y el otro con carga negativa.

Carga eléctrica

Es una de las propiedades básicas de la materia. Realmente, la carga eléctrica de un cuerpo u objeto es la suma de las cargas de cada uno de sus constituyentes mínimos (moléculas, átomos y partículas elementales). Por ello se dice que la carga eléctrica está cuantizada. Existen dos tipos de carga eléctrica, que se han denominado cargas positivas y negativas. Las cargas eléctricas de la misma clase o signo se repelen mutuamente y las de signo distinto se atraen.

Principio de conservación y cuantización de la carga

Las cargas eléctricas solo se pueden producir por parejas. La cantidad total de las cargas eléctricas positivas producidas en igual a la de las negativas, es decir, la cantidad total de carga eléctrica en cualquier proceso permanece constante. Además, cualquier carga localizada en un cuerpo siempre es múltiplo entero de la unidad natural de carga, la del electrón.

Ejemplos de fenómenos eléctro-estaticos

  1. Poniendo muy próximos dos péndulos eléctricos tocados con vidrio frotado, se observa una repulsión mutua; si los dos se han tocado con resina frotada, la repulsión se origina análogamente; si uno de los dos péndulos se ha puesto en contacto con resina frotada y el otro con vidrio, se produce una mutua atracción.
  2. Cuando frotamos una barra de vidrio con un paño. Lo que hemos hecho es arrancar cargas negativas de la barra que han quedado atrapadas en el paño, por lo que la barra inicialmente neutra ha quedado con defecto de cargas negativas (cargada positiva-mente  y el paño con un exceso de cargas negativas, en el sistema total vidrio-paño, la carga eléctrica no se ha modificado, únicamente se ha redistribuido.
  3. Cuando caminas por alfombra y tocas el pivote de la puerta metálico. Sientes una descarga eléctrica.
  4. Cuando te peinas con un peine puedes recoger pedacitos de papel con el peine.





Óptica geométrica



Formación de un arco iris por medio de la óptica geométrica.
En física, la óptica geométrica nace apatir del siglo IV a.c Snell (o Descartes según otras fuentes) de la reflexión y la refracción. A partir de ellas, basta hacer geometría con los rayos luminosos para la obtención de las fórmulas que corresponden a los espejos, dioptrio y lentes (o sus combinaciones), obteniendo así las leyes que gobiernan los instrumentos ópticos a que estamos acostumbrados.

La óptica geométrica usa la noción de rayo luminoso; es una aproximación del comportamiento que corresponde a las ondas electromagnéticas (la luz) cuando los objetos involucrados son de tamaño mucho mayor que la longitud de onda usada; ello permite despreciar los efectos derivados de la difracción, comportamiento ligado a la naturaleza ondulatoria de la luz.



  

Propagación de la luz

Como se indicó anteriormente, en la óptica geométrica, la luz se propaga como una línea recta a una velocidad aproximada de 3*108 ms-1. La naturaleza ondulatoria de la luz puede ser despreciada debido a que aquí la luz es como un chorro lineal de partículas que pueden colisionar y, dependiendo del medio, se puede conocer cual es su camino a seguir. Éstos rayos pueden ser absorbidos, reflejados o desviados siguiendo las leyes de la mecánica.

Reflexión y refracción


Reflexión de la luz, un haz choca contra un espejo y se refleja.
El fenómeno más sencillo de esta teoría es la de la reflexión, si pensamos unos minutos en los rayos luminosos que chocan mecánicamente contra una superficie que puede reflejarse. La proporción entre los rayos que chocan y los que salen expedidos está regulada por los ángulos de éstos en relación con una línea perpendicular a la superficie en la que se reflejan. Entonces la ley de reflexión nos dice que el ángulo incidente es igual al ángulo reflejado con la perpendicular al espejo:1
(1)\ \theta_{\tau} = \theta_{i}
La segunda ley de la reflexión nos indica que el rayo incidente, el rayo reflejado y la normal con respecto a la superficie reflejada están en el mismo plano.2

[editar]Ley de Snell

El índice de refracción "n" de un medio viene dado por la siguiente expresión, donde v es la velocidad de la luz en ese medio, y "c" la velocidad de la luz en el vacío:
 n = \frac {c} {v}
Ya que la velocidad de la luz en los materiales depende del índice de refracción, y el índice de refracción depende de la frecuencia de la luz, la luz a diferentes frecuencias viaja a diferentes velocidades a través del mismo material. Esto puede causar distorsión de ondas electromagnéticas que consisten de múltiples frecuencias, llamada dispersión.
Los ángulos de incidencia (i) y de refracción (r) entre dos medios y los índices de refracción están relacionados por la Ley de Snell. Los ángulos se miden con respecto al vector normal a la superficie entre los medios:
 n_{i} \cdot \sin(\alpha_{i}) = n_{r} \cdot \sin(\alpha_{r})

Lentes

Las lentes con superficies de radios de curvatura pequeños tienen distancias focales cortas. Una lente con dos superficies convexas siempre refractará los rayos paralelos al eje óptico de forma que converjan en un foco situado en el lado de la lente opuesto al objeto. Una superficie de lente cóncava desvía los rayos incidentes paralelos al eje de forma divergente; a no ser que la segunda superficie sea convexa y tenga una curvatura mayor que la primera, los rayos divergen al salir de la lente, y parecen provenir de un punto situado en el mismo lado de la lente que el objeto. Estas lentes sólo forman imágenes virtuales, reducidas y no invertidas.
Si la distancia del objeto es mayor que la distancia focal, una lente convergente forma una imagen real e invertida. Si el objeto está lo bastante alejado, la imagen será más pequeña que el objeto. Si la distancia del objeto es menor que la distancia focal de la lente, la imagen será virtual, mayor que el objeto y no invertida. En ese caso, el observador estará utilizando la lente como una lupa o microscopio simple. El ángulo que forma en el ojo esta imagen virtual aumentada (es decir, su dimensión angular aparente) es mayor que el ángulo que formaría el objeto si se encontrara a la distancia normal de visión. La relación de estos dos ángulos es la potencia de aumento de la lente. Una lente con una distancia focal más corta crearía una imagen virtual que formaría un ángulo mayor, por lo que su potencia de aumento sería mayor. La potencia de aumento de un sistema óptico indica cuánto parece acercar el objeto al ojo, y es diferente del aumento lateral de una cámara o telescopio, por ejemplo, donde la relación entre las dimensiones reales de la imagen real y las del objeto aumenta según aumenta la distancia focal.
La cantidad de luz que puede admitir una lente aumenta con su diámetro. Como la superficie que ocupa una imagen es proporcional al cuadrado de la distancia focal de la lente, la intensidad luminosa de la superficie de la imagen es directamente proporcional al diámetro de la lente e inversamente proporcional al cuadrado de la distancia focal. Por ejemplo, la imagen producida por una lente de 3 cm de diámetro y una distancia focal de 20 cm sería cuatro veces menos luminosa que la formada por una lente del mismo diámetro con una distancia focal de 10 cm. La relación entre la distancia focal y el diámetro efectivo de una lente es su relación focal, llamada también número f. Su inversa se conoce como abertura relativa. Dos lentes con la misma abertura relativa tienen la misma luminosidad, independientemente de sus diámetros y distancias focales.

Espejos

Hay tres tipos de espejos:
  • Planos: si el espejo no presenta curvatura diremos que es un espejo plano.
  • Cóncavos o divergentes: si la curvatura de un espejo es "hacia adentro" desde el punto de vista observado diremos que es un espejo cóncavo.
  • Convexos o convergentes: si la curvatura de un espejo esta "hacia afuera" desde el punto de vista observado diremos que es un espejo convexo.

Prismas

Un prisma es un objeto capaz de refractar, reflejar y descomponer la luz en los colores del arco iris. Generalmente, estos objetos tienen la forma de un prisma triangular, de ahí su nombre.
De acuerdo con la ley de Snell, cuando la luz pasa del aire al vidrio del prisma disminuye su velocidad, desviando su trayectoria y formando un ángulo con respecto a la interfase. Como consecuencia, se refleja o se refracta la luz. El ángulo de incidencia del haz de luz y los índices de refracción del prisma y el aire determinan la cantidad de luz que será reflejada, la cantidad que será refractada o si sucederá exclusivamente alguna de las dos cosas.
1. Los prismas reflectivos son los que únicamente reflejan la luz, como son más fáciles de elaborar que los espejos, se utilizan en instrumentos ópticos como los prismáticos, los monoculares y otros.
2. Los prismas dispersivos son usados para descomponer la luz en el espectro del arcoíris, porque el índice de refracción depende de la frecuencia (ver dispersión); la luz blanca entrando al prisma es una mezcla de diferentes frecuencias y cada una se desvía de manera diferente. La luz azul es disminuida a menor velocidad que la luz roja.
3. Los prismas polarizantes separan cada haz de luz en componentes de variante polarización.
 
    
  
   
   
    
  
  



No hay comentarios:

Publicar un comentario